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Abstract-Various aspects and characteristics of the void propagation equation are discussed. This 
equation predicts the transient response of the volumetric concentration to perturbations of (1) power 
input, (2) inlet flow, (3) system pressure, (4) thermodynamic nonequilibrium, (5) compressibilities of the 
vapor and of the liquid and (6) body forces acting on the two-phase mixture. This transient response is 
predicted both as function of space and function of time. 

Solutions of the void propagation equation are derived for the following operating conditions: (I) 
constant power and inlet flow, (2) oscillatory power input, (3) oscillatory inlet flow and (4) oscillatory power 
and oscillatory flow. 

It is shown that perturbations of the mixture density are propagated through the two-phase mixture 
by the velocity of kinematic waves. Expressions which predict the rate of propagation of these waves and 
which are appropriate to the operating conditions listed above are presented. 

The finite rate of propagation of kinematic waves introduces a “delay time” which characterizes the 
response of the volumetric concentration to various perturbations. The “delay times”, appropriate to the 
operating conditions enumerated above, are also presented. 

The predicted results arc compared to available experimental data, satisfactory agreement is shown. 

NOMENCLATURE V, 

MLTO system of units, with H defined by l/gj, 
H = ML2F2. Vf’ri, 

velocity [L/T] ; 
drift velocity of the vapor [L/T] ; 
drift velocity of the liquid [L/T]; 

cross-sectional area [L2] ; 
velocity of kinematic wave [L/T]; 
distribution perimeter [-] ; 

_” 

D, 
D,’ 

= $ + 1’ a total derivative follow- 
J irz’ 

diameter of the duct [L] ; 
ing liquid particle; 

energy [H/M] ; Dsl - (! 

acceleration due to gravity [L/T’] ; 0, 
= f + vg az’ total derivative follow- 

heat-transfer coefficient [HLm2 T- ’ ing vapor particle ; 
O-l]; Z, distance in the axial direction [L]. 
enthalpy of the liquid [H/M] ; 
enthalpy of the vapor [H/M] ; Greek symbols 
latent heat of vaporization [H/M] ; vapor volumetric concentration [-I ; 
volumetric flux density [L3/TL2] ; ;, rate of mass formation per unit 
boiling length [L] ; volume [M/OL3] ; 
pressure [M/T21 ; 6, surface tension [ML/T2L] ; 
time [T]; mass density [M/L31 ; 
temperature difference; or - py CML-31; 
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characteristic reaction frequency 

[T-l]; 
evaporation time constant [T] ; 
heated perimeter [L] ; 
frequency of inlet flow oscillation 

[T-l]; 
frequency of input power oscilla- 

tion [T-l]. 

Subscripts 

f 9 liquid ; 

83 vapor ; 
111, mixture ; 

relative ; 
liquid inlet. 

Dimensionless group 

tp, cp 

1:‘* r*: 
I-,*, 
a*, 
t*, 
_* 

I 3 

w*, 
C,*, 
( >q 

power and inlet flow oscillation ampli- 

tude ; 
see equation (61); 

see equation (30) ; 

see equation (41) ; 
see equation (32); 

see equation (29) ; 

see equation (38); 
see equation (50) ; 

see equation (51); 
average value across duct cross-sec- 

tion. 

1. INTRODUCTION 

1.1 Prerious work 
THE ABILITY to predict the transient response 
of the volumetric concentration in a two-phase 
system is of considerable importance to present 

technology. For example, analyses and accurate 
predictions of the dynamic characteristics of 
nuclear reactors, space power plants, marine 
propulsion systems, chemical process apparatus, 
etc., depend on the correct formulation of the 
transient response of the volumetric concentra- 
tion. Consequently, there have been numerous 
publications concerned with this problem. 

The different methods which have been used 
to analyse the problem are discussed in more 

detail elsewhere [I, 21. It was noted there that 

the problem was formulated either in terms of 
questionable methods or in terms of an in- 

complete set of equations describing the con- 

servation laws for the mixture. 

With exception of reference [3] all analyses 

which consider the conservation equations were 

formulated in terms of (1) the momentum equa- 

tion for the mixture, (2) the energy equation of 

the mixture and (3) 0/1e equation of continuity, 

i.e. the continuity equation for the mixture. This 
is most surprising since it is well-known?- that 

for multi-component or multi-phase system the 

number II, of continuity equations is equal to the 

number IZ of the components or of the phases. 

It is customary to add these !I equations in OUP 
continuity equation for the mixture, and to cx- 

press the remaining II - 1, equations as di&ion 
eyt~tions. With exception of reference [3]. who 
consider a diffusion equation for the vapor. this 

was never done in analyses of boiling. two-phase 

flow systems. As noted above, all analyses deal- 

ing with the transient response of a boiling 
mixture were formulated in terms of only O/IL’ 

equation of continuity, i.e. the continuity equa- 
tion for the mixture. No reference was ever made 

to either the continuity equations of the con- 
stituents or to the resulting diffusion equation. 

1.2 Purpose of’this article 
The questions of interest in an analysis of the 

transient behavior of a two-phase flow system 

are : 

(1) How can the change of volumetric con- 

centration c(, as it passes through the 

system be predicted in advance? 
(2) When will such a change reach a given 

point in the system? 
(3) As the variation of the volumetric con- 

centration CX, moves along the duct will 
the variation spread out or will it become 
more concentrated, and how fast? 

i Ser. for example. reference [J]. 
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In analyses of multi-component systems (for 
example mixture of gases) it has been customary 
in the past to seek the answer to the three ques- 
tions above by formulating the problem in 
terms of Fick’s diffusion equation and by deter- 
mining the diffusion coefficient from experiment. 
The same approach could be used in analysing 
the transient response of a forced convection, 
boiling system were it not for the fact that no 
data are available in the literature on the diffu- 
sion coefficient in such a system. 

Instead of seeking a solution in terms of the 
diffusion equation, it was shown analytically 
and verified experimentally in reference [S] (by 
bubbling air through water) that the kinematic 
wave theory [6,7] provides a convenient answer 
to the three questions posed above. The kine- 
matic wave theory was developed by Lighthill 
and Whitham [6, 73 for analysing flood waves 
and traffic flow on highways. Indeed, the ques- 
tions which were raised above and which are of 
interest to the chemical process industry and to 
the nuclear reactor technology, are identical 
with those raised by Lighthill and Whitham in 
connection with the flow of cars. 

The kinematic wave theory was apparently 
first applied [S] to analyse the transient response 
of a dispersed two-phase (solid-gas) system. It 
has been successfully applied to analyse both the 
transient response and the operating limits of 
fluidized systems in the absence of a change of 
phase [9-l l].t The relation between an analysis 
formulated in terms of kinematic waves and an 
analysis formulated in terms of the diffusion 
equation is given in references [l l-131 ; it is 
also summarized in the Appendix A. 

A general expression which can be used to 
predict the transient response of the vapor 
volumetric concentration in a two-phase sys- 

tem with a change ofphase has been derived 
[ 1,2]. The resulting void propagation equation, 
which was formulated and expressed in terms of 
kinematic waves, gives the response of the vapor 
volumetric concentration to variation of: (1) 

t Further references are given in reference [I I]. 

power density, (2) pressure, (3) energy storage in 
the vapor, (4) compressibilities of the liquid and 
of the vapor, (5) flow rate and (6) gravitational 
force field, i.e. of the body forces. This general 
expression for predicting the void response is 
compared [l, 21 to the analytical results re- 
ported previously and, in particular to the 
results of Kanai et al. [14]. 

It has been shown [15, 161 that both the rate 
of propagation as well as the wave form of the 
void disturbance predicted by the void propaga- 
tion equation were in good agreement with the 
experimental data reported. In these experi- 
ments, performed in a forced convection loop 
with boiling Refrigerant 22, the oscillatory power 
input to the fluid was of the form of [l + a2 
sin* ot + 2a sin wt] whereas the vapor void 
response was determined by means of X-ray 
attenuation. The same expression for the power 
input was used in the computer solution of the 
void propagation equation in order to compare 
the predicted results with experimental data. 
Figure 1, which is reproduced from reference 
[ 15,161 shows such a comparison. It can be seen 

that the oscillatory volumetric concentration 
(a) predicted by the analysis at different times 
and at different locations along the heated duct 
are in agreement with the experimental data. 

It is of interest to reactor kinetics and to the 
chemical industry to predict the vapor void 
response when the oscillatory power input term 
is of the form of (1 + cP sin w,t). It is of further 
interest to predict the vapor void response to 
inlet flow oscillations of the form (1 + tf sin wSt). 

It is therefore the purpose here to derive closed 
form analytical solutions of the void propaga- 
tion equation which give the response of the 
vapor volumetric concentration to these two 
perturbations. In particular we shall obtain 
solution of the void propagation equation for the 
following cases: (1) constant power input, (2) 
oscillatory power input, (3) oscillatory inlet flow 
and (4) both power input and inlet flow oscilla- 
tory. The solutions are presented in dimension- 
less form so that they can be applied to various 
systems of practical interest. 



874 NOVAK ZUBER and F. W. STAUB 

.6 = 

0.5 I.0 I.5 2.0 2.5 
TIME, s 

FIG. 1. Comparison of calculated and measured volumetric concentration for 
oscillating heat input where wt = 0 at zero time. Reduced pressure = 0.22; 
average q = 4820 Btu/h ft* (see reference [16]). Arrows refer to maximum power 
input to wall and fluid respectively. 

Distance from heated inlet (ft) 
v 0.52 c, 2.94 
0 I.13 . 4.54 
n 2.01 

2. FORMULATION OF THE PROBLEM 

2.1 The jiame of reference 
In a two-phase flow system the velocities of 

the two phases are never equal, i.e. there is 
always a relative motion of one phase with 
respect to the other. Consequently, a two-phase 
flow problem must be always formulated in 
terms of two velocity fields. However, there are 
several velocity fields which are useful in 

analysing various aspects of a two-phase flow 
system.? Depending upon the particular aspect 
one can select a reference frame and formulate 
the problem in terms of the velocity fields that 
are most representative of and appropriate to 
the solution of that particular problem. 

In transient void (or holdup) problems, it is of 

t A more detaded discussion is given elsewhere [I 71. 
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interest to determine the response of the volu- 
metric vapor concentration to various perturba- 
tions such as power, flow, pressure, etc. For this 
particular two-phase flow problem, it is then 
advantageous to formulate the analysis [l, 21 in 
terms of the velocity of the center of volume j, 
and of the drift velocity Vgj and Vfj of the vapor 
and of the liquid with respect to j. 

Let vf and vg be the local point values of the 
velocities of the liquid and of the vapor and let 
c( be the local point value of the volumetric 
concentration of the vapor, then we define the 
volumetric flux densities of the liquid j,, and 
the vapor jg, by 

j, = (1 - cr)vl (1) 

j, = ccv 9 (2) 

and the volumetric flux density of the mixture 
by: 

j = j, + i, (3) 

which in view of equations (1) and (2) can be 
expressed as : 

j = (1 - a)vf + ova. (4) 

Two observations are of interest. First, we 
note that equations (l), (2) and (4) correspond, 
mathematically, to the definitions of the number 
velocities in the kinetic theory of gases. Second, 
we note that equation (4) is an average velocity 
of the mixture obtained by weighing the re- 
spective velocities of the two phases by weight 
factors (1 - a) and a which are proportional to 
the two volumes occupied by the liquid and by 
the vapor phase respectively. Consequently, 
equation (4) can be interpreted either as the 
local volumetric flux density of the mixture or 
as the velocity of the center of volume of the 
mixture. 

The expression for j, which was derived [l, 21 
for the case of one-dimensional flow of a two- 
phase mixture with a change of phase is given 
by: 

= APES 
j=ufi+ zp----- 

rr 

(1 - 4 D,P, 

9 PS Dt 

a Dgpg pg Dt 1 dz (5) 

where usi is the inlet liquid velocity; pf and ps 

are the densities of the liquid and of the vapor; 
Ts is the vapor source term which is discussed in 
the section that follows and total derivatives are 
defined by : 

(6) 

Consequently, the last two terms on the right- 
hand side of equation (5) represent the effect of 
the compressibilities of the two phases. 

It can be seen from equation (5) that the velo- 
city j, of the center of volume, i.e. the volumetric 
flux density of the mixture at a given point in the 
system, depends on the inlet velocity and on the 
integrated effect of the vapor generation in the 
test section decreased by the effects of the com- 
pressibilities of the two phases. 

Taking now a reference frame which moves 
with the velocity j, we define the local drijt 
velocities with respect to the center of volume of 
the mixture by : 

and 

Vfj = vf - j (7) 

V,, = vg - j (8) 

It was shown [18-201 that the drift velocity 
of the vapor depends upon the flow regime of 
the two-phase mixture. The various expressions 
for I/ej, appropriate to the various flow regime, 
are given together with a general method for 
determining the drift velocity. It was also shown 
that for a number of flow regimes, such as the 
turbulent bubbly flow, the slug flow etc., the 
drift velocity V,. does not depend upon the void 
fraction tl. For example, for the churn turbulent 
bubbly flow, the vapor drift velocity is given by : 

Qj = 1.53 
agAp G 

[ 1 p: 



876 NOVAK ZUBER and F. W. STAUB 

whereas for the slug flow regime it is given by : 

s&D ’ vgj = 0.35 ~ 
[ 1 (10) Pf 

Additional expressions are listed in references 
[18-201. 

2.2 The vapor source term 
The one-dimensional equation of continuity 

for the vapor in a two-phase mixture with a 
change of phase is given by : 

The vapor source term Tg, has the same mean- 
ing as the mass source term in the continuity 
equation for a given species undergoing a 
chemical reaction. Consequently, in order to 
specify rg, it is necessary to specify the constitu- 
tive equation for the process. 

The constitutive equation for chemical reac- 
tions are given in terms of the reaction rates. 
For a two-phase mixture, the problem is con- 
siderably more complicated, because the con- 
stitutive equation will depend not only upon the 
mode of mass transfer, but also upon the topology 
of the interface, i.e. whether it is spherical, 
cylindrical, plane, etc. The expression for the 
vapor source term Tg, will depend therefore upon 
the flow regime. 

The constitutive equations for a two-phase 
flow mixture with a change of phase are dis- 
cussed further elsewhere [17] together with the 
expressions for Te appropriate to the various 
flow regimes. For the purpose of this paper we 
note that the vapor source term Tg can be also 
obtained from the energy equation for the mix- 
ture when expressed in term of the convected 
coordinates [ 171. 

The energy equation for the two-phase mix- 
ture is [17] : 

+ rg(Eg - Ef) = hAT 2 
0 c 

where we have neglected the effects of frictional 
heating. In equation (12) the convected deriva-. 
tives are given by equation (6), the density of the 
mixture pm, is given by : 

Pm = (1 - E)Pf + Vg (13) 

whereas the energies E, and E, are given by : 

(14) 

E,=i,+g+4 

where i, and i, are the enthalpies of the liquid 
and of the vapor. 

The term $ in equations (12) and (14) is the 
potential energy. For most terrestrial systems of 
practical interest body forces other than gravity 
are unimportant. For these systems then the 
potential energy is time independent and it is 
given by : 

(p = gz. (15) 

However, when the body forces are functions of 
time, as may be the case for marine and space 
systems under certain operating conditions, then 
the potential energy is a function of time whence 

g # 0. (16) 

The significance of the various terms, which 
appear in equation (12), are as follows. The first 
two terms on the left-hand side account for the 
lack of thermodynamic equilibrium (i.e. for the 
subcooling or superheating) in the liquid and 
in the vapor phase. The third term represents the 
energy required to generate a given mass of 
vapor per unit time per unit volume. The first 
term on the right-hand side represents the power 
input per unit volume of the mixture. The second 
term accounts for the effects of system pressure 
variations on the energy content; whereas the 
last term accounts for the time dependent body 
force. 
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It can be seen from equation (12) that when the 
terms on the right-hand side are given then the 
vapor source term can be determined if it is 
assumed that both the liquid and the vapor are 
in thermodynamic equilibrium.? However, if 
thermodynamic equilibrium is not attained, 
then information on the constitutive equation, 
appropriate to the particular flow regime, is 
required. 

2.3 The void propagation equation 
The void propagation equation for a two- 

phase flow system with a change of phase which 
was derived in references [ 1, 2] is given by : 

a0. ,t+ck+2 (17) 

where Ck is the velocity of kinematic waves and 
s2 is the characteristic reaction frequency. The 
relation between this equation and the standard 
formulation in terms of the diffusion equation 
is discussed in more detail elsewhere [12, 131, it 
is also summarized in Appendix A. Before pro- 
ceeding further, it is advantageous to discuss 
the significance of the various terms in equa- 
tion (17). 

The void propagation equation shows that 
changes in the volumetric concentration c(, 
are transmitted through the system by the 
velocity of kinematic waves C,. This velocity 
can be expressed as : 

or, in view of equation (8), as : 

c =v k 4 

(18) 

(19) 

-. __~. --~ 
t Note that the statement thermodynamic equilibrium is 

equivalent to an assumption of a constitufior equation for 
etuporarim, i.e. of an equation describing a particular process 
of vapor formation. In this particular case it corresponds to 
a process where the energy is transferred from the heating 
surface to the vapor without any time delay and energy 
storage in either the liquid or the vapor [see equation (12) 
for the case when i, and i, are constant]. 

Three important observations can be made with 
respect to equations (18) and (19). 

(1) Since the vapor drift velocity V,j depends 
upon the flow regime, equations (17) and (18) 
show that the transient void response will de- 
pend also upon the flow regime. This conclusion 
has been already verified in the experiments 
reported in reference [5]. 

(2) Since changes of the volumetric concentra- 
tion a, are propagated with the velocity of kine- 
matic waves Ck, equations (17) and (19) show 
that changes of c( will propagate backwards or 
forwards with respect to the velocity of the 
vapor, i.e. Ck < vg or C, > v9, depending on 
whether the vapor drift velocity Qj decreases 
(aV,,/& < 0) or increases (aV,j/dcc > 0) with 
increasing c(. When V, does not depend upon 
c( then C, = vg, and the void perturbations pro- 
pagate with the local vapor velocity. 

(3) Since the velocity of kinematic waves C,, 
depends upon the volumetric flux density of 
the mixture, equations (5) and (18) show that 
the kinematic wave velocity depends upon the 
inlet conditions and upon the integrated effect 
of the vapor generation in the test section de- 
creased by the effects of the compressibilities of 
the two phases. 

In view of the foregoing it can be seen that, at 
a given location, the velocity of the kinematic 
waves takes into account (1) the effect of flow 
regime, (2) the entrance effect and (3) the effect 
of the past history of the mixture as it flows 
through the heated duct. 

The characteristic reaction frequency Q in 

equation (12), is given by [l, 21. 

It can be seen from equation (20) that the charac- 
teristic reaction frequency takes into account the 
local effects of the vapor generation and of the 
compressibilities of the two phases. This is in 
contrast to the velocity of kinematic waves which, 
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as noted above, depends upon the integrated 
effect of these three terms. 

Substituting equations (20), (18) and (5) into 
equation (17), the void propagation equation 
for a two-phase mixture with a change of phase 
becomes : 

0 

(1 - 4 &P, 
-_____- a D,p!J 

PJ Dt ps Dt 1 I d,- “! = 
c': 

Anr - 3 + cc(1 - CX) l D,p, - l DclpcJ (21) Ps Ps or Dt p!J Dt 1 
with the vapor source term Ts given by equation 
(12) thus 

Y 
rs = & hAT $ + $ 

9 s [ 0 c 

DfEf + P_$ - (1 - dPfT 

D,E, - ap, Dt 

1 
(22) 

It can be seen from equations (21) and (22) that 
the void propagation equation predicts the 
void response to perturbations of: (1) flow rate, 
(2) power input, (3) system pressure, (4) thermo- 
dynamic nonequilibrium, (5) compressibilities 
of the two phases and (6) of the body forces. 

The volumetric concentration in equation (21) 
is the value of a at a given point in the system. 
In practice one is interested in the value of CI 
averaged over the cross-sectional area of the 
duct. The difference between these two values 
of c( is caused by the nonuniform flow and con- 
centration profiles. 

In order to express equation (21) in terms of 
the average volumetric concentration, we follow 
the method presented previously [18-201. We 
define the value of a quantity F averaged over 
the cross-sectional area by : 

(23) 

and the weighted mean value of F by 

I;=” 
(~1) A s ctF dA (34) 

.4 

Thus, in view of equation (24), we define the 
weighted mean drift velocity of the vapor by : 

(25) 

In most problems of practical interest the 
compressibilities of the liquid and of the vapor 
can be neglected. Similarly, to a good approxima- 
tion, the densities of the two phases remain 
constant in a cross-sectional area of the duct, 
i.e. they do not depend upon the radius of the 
duct. Consequently, it is permissible for the 
purpose ofthis paper, to use these two simplifying 
assumptions when evaluating the average value 
of K 

By means of equations (23) to (25) and follow- 
ing the presentation [l, 21 the void propagation 
equation can be expressed in terms of the average 
volumetric concentration (a), thus 

COAP = (r,) dz (‘(E> 
+- 

Pf s I- PS 2z 
0 

where the distribution parameter Co is defined 

by 

(27) 

It takes into account the effects of the non- 
uniform flow and concentration profiles [ 18-3 11. 

It has been shown [18-201 that in vertical up- 
ward flow through a circular duct, when the 
volumetric concentration is highest at the center 
of the duct, the distribution parameter Co, can 
vary between 1.0 and 1.5. However, when the 
concentration is highest next to the duct walls 
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(as may be the case in subcooled boiling) the 
distribution parameter can have a value smaller 
than unity [18]. It was also shown that, for a 
number of flow regimes, with established pro- 
files of the flow and of the concentration both C, 
and the weighted mean drift velocity yqj, of the 
vapor remain essentially constant but that both 

change with a change of flow regime, i.e. with a 
redistribution of the flow and concentration. 
The values of Co and of ~~j appropriate to the 
regimes as well as the method for determining 
them were given [18-201. 

In what follows we shall solve equation (26). 
however, in order to generalize the results we 
shall first express equation (26) in dimensionless 
form. 

2.4 The dimensionless form of the ooid propaga- 
tion equation and the general form of the 
solution 

In order to render the void propagation equa- 
tion dimensionless we define the dimensionless 
length by: 

z* = z 
L, 

(28) 

where L, is the length of the duct along which 
the process of evaporation takes place. In what 
follows, we shall consider those flow regimes for 
which the vapor drift velocity.does not depend 
upon time ; we define then the dimensionless time 
by: 

t* = Co”fi + 5 t 
Lll 

the dimensionless vapor source term by : 

pi = c 2 Lb U,) 
’ PJ cOuJi + cir 

(30) 

and the dimensionless velocity of kinematic 
waves by : 

C: = 1 + = r* dz*. 
d 

(31) 

The resulting equation can be simplified if we 
define the volumetric concentration by : 

a* = co $ (a). (32) 

Substituting equations (28) to (32) into equa- 
tion (26), the dimensionless form of the void 
propagation equation becomes : 

g + c: g = (1 - a*)T* (33) 

When the vapor source term r* does not de- 
pend upon the volumetric concentration, then 
equation (33) is a first-order linear partial differ- 
ential equation whose solution can be obtained 
by means of characteristics [22,23]. The general 
solution of equation (33) is of the form: 

uz =fh) (34) 

where 

u,Ca *, t*, z*] = C, and 

uz(a*, t*, z*) = cz (35) 

are solutions of any two independent differential 
equations which imply the relationships 

&* _ dz* _ da* 
c: (1 - a*)T* 

(36) 

For example, by taking alternately the first and 
the second equation, the first and the third 
equation we obtain 

and 

dz* 
-= 
dt* G (37) 

da* 
- = (1 - a*)T* 
dt* (38) 

which, for the initial and boundary conditions 
given by : z* = 0, a* = 0, t* = t&yield the follow- 
ing solutions : 

2’ 

s 

dz* 
t* - tt = __ 

C,* 
(39) 

0 

and 

a* = 1 - exp [- 7 r* dt*]. 
tl! 

(40) 
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We shall here consider systems in thermo- 
dynamic equilibrium, we shall neglect therefore 
the effects of superheat or of subcoo1ing.t Since 
we are interested in the effects of power and flow 
oscillations on the volumetric concentration we 
shall neglect also the effects of pressure variations 
and of the time dependent body forces. 

In what follows, we shall obtain solutions of 
the void propagation equation for the following 
cases : (1) constant power input, (2) oscillatory 
power input, (3) oscillatory inlet flow and (4) both 
power input and inlet flow oscillating. 

3. CONSTANT POWER INPUT AND INLET FLOW 

Neglecting in equation (22) the effects of 
pressure variations, of variable body forces and 
of thermodynamic nonequilibrium, and substi- 
tuting the resulting expression in equation (30), 
we obtain for the dimensionless vapor source 

r*=c dp 4 
0 (41) 

with hAT = q, where q is the power input to the 
liquid. 

The dimensionless velocity ofkinematic waves, 
given by equation (311, then reduces to 

c: = 1 + I-*.?* (42) 

Substituting this expression in equation (36), 
the volumetric concentration CC*, as function of 
distance, is obtained from the second and third 
term in equation (36), thus 

a* = r,*z* 

1 + r,*z* 
(43) 

Introducing in equation (43) the expressions 
for .z*, c1* and r*, given by equations (281, (32) 
and (41f respectively we obtain the equation 
which predicts the vapor volumetric concentra- 
tion in a uniformly heated duct when the inlet 

? We note that in systems where the inlet temperature is 
below saturation, the degree of subcooling has a considerable 
effect on the transient response of the void fraction. The 
result of an investigation concerned with this aspect of the 
problem will be reported seaparately. 

liquid is at saturation temperature, i.e. in 
absence of subcooling, thus : 

(4 = 

Wp&fgKid-4b 

CQVfi + ~j 
(4) 

+ Co(ApIpf)(qIpsAif9)(5hlAc)Z 

which is of the same form as the expression de- 
rived previously [18-20] using a different 
method. 

Substituting equation (42) in (39) and equation 
(41) in (40), we obtain respectively: 

c: = exp [r;(t* - t$] (45) 

and 

ci* = 1 - exp [-r$(t* - $,I. (46) 

The latter equation can be expressed in terms of 
dimensional quantities; thus for equations (461, 
(41), (32) and (29), we obtain : 

1 - exp 
[ 

-CAL-? 4 o pf z($jr - to)]. (47) 

Both equations (46) and (47) show that the vapor 
volumetric fraction is an exponential function 
of time which is a characteristic of chemical 
reactions. For this problem the reaction fre- 
quency is given by 

Q=+! q 6-h - .- 
’ P/ p,& 4 ’ 

(48) 

Figure 2 shows the values predicted by equa- 
tion (44) together with the experimental data of 
reference [19] for Refrigerant-22 in forced flow 
through a circular duct. Figure 3 shows the 
comparison with the experimental data of 
reference [24] for water at 400 psi in forced flow 
through a rectangular duct. In preparing these 
figures the boiling length L, was taken equal to 
the length of the duct. This equality results from 
the assumption of thermodynamic equilibrium 
which implies that the inlet liquid is at satura- 
tion temperature and that boiling starts at the 
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FIG. 2. Comparison of the void fraction for constant power input predicted by equation (44) with 
experimental data in the churn-turbulent regime for Refrigerant-22 in a round tube [16]. 

entrance of the heated duct. This was indeed 
the case for the data shown in Fig. 2. For the 
data shown in Fig. 3 (run No. 7 in reference [24]) 
there was a slight subcooling of 1.5 deg F so that 
the bulk liquid reached saturation temperature 
at z* = O-045 instead at z* = 0 as assumed in the 
computations.t We note that had we corrected 
the quality to take into account this sub- 
cooling, the predicted curve would have shifted 
to the right resulting in a slightly better agree- 
ment with the experimental data. Nevertheless, 

t The other data reported in reference [24] had a higher 
subcooling, consequently, they are not used here for com- 
parison. They are shown in reference [20] together with an 
analysis of the void fraction in subcooled boiling. 

it appears from Figs. 2 and 3 that the predicted 
results are in satisfactory agreement with the 
experimental data. Additional comparisons are 
shown elsewhere [19,20]. 

The relations between the expressions that 
have been derived in this paper and those derived 
previously [25-281 for the case of homogeneous 
flow, i.e. for the case when both phases move with 
the same velocity, are given in Appendix B. 

4. OSCILLATORY POWER INPUT 

Let the oscillatory power input to the liquid 
be given by : 

q(t) = qe(1 + cP sin opt) (49) 
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FIG. 3. Comparison of the void fraction for constant power input predicted by equation (44) with 
experimental data of reference [24] for water in a rectangular channel (see Section 3). 

and let the dimensionless frequency of the power 
oscillation be defined by : 

w* = OpLb 
P COUfi + Ej 

Then the dimensionless velocity of kinematic 
waves, given by equation (3 l), becomes : 

C: = 1 + rX(l + cp sin o,*t*)z* (51) 

and the dimensionless vapor source term be- 
comes : 

r* = r,*(l + cp sin w,*t*) (52) 

where I’$ is given by equation (41). 
Substituting equation (52) in (38), i.e. in 

(40), results in : 

cc* = 1 - exp 
[ 

-rg(t* - tf) 

C%, +- (cos cop* - cos w*tg) 
1 

(53) 
OP 

Substituting equation (51) in (37) gives: 
dz* 
~ - r,*(l + cp sin w,*t*)z* = 1 
dt* (54) 

whose solution is given by : 

z* exp 
[ 

-r,*t* + ~COS&j 

P 

- 

s [ 
ev - ro*t* 
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mp +- 
0; 

cos w,*t* 1 dt* = constant (55) 

The integral in equation (55) can be evaluated 
by successive approximations. However, the 
advantage of having an analytical solution is 
then lost because of the complexity of the result- 
ing general solution. 

It is advantageous, therefore, to obtain an 
approximate but simple, closed form solution 
which, as it will be seen in what follows, is in 
satisfactory agreement with the exact solution 
obtained by means of a computer. 

The simplification is obtained by letting 

cP 
= 0 in equation (54). This implies that the 

effect of oscillations is neglected when evaluating 
the velocity of the kinematic waves given by 
equation (51). We note that the effect of oscilla- 
tions is not neglected in the source term. With 
this assumption C, reduces to equation (42), 
and equation (37) yields (45), thus : 

rg(t* - to*) = In (1 + To*z*) 

This defines the delay time t& thus : 

(56) 

tt = t* - &In (1 + T,*z*) (57) 
0 

Substituting equation (56) in (53), we obtained 
a* as a function of z* and t*, thus: 

exp [(ro*tp/wf)(cos ~,*t* 
- 

a*=l- 
1 + r,*z* 

cos +,*)I (58) 

In view of equation (32), it can be seen that 
equation (58) predicts the average volumetric 
concentration (a), at various positions in the 
heated duct and at various times a function of 
the oscillatory power input. We note also if we 
set cp = 0 in equation (58), we obtain again the 
solution for case of constant power input given 
by equation (43). 

The values predicted by equation (58) are 
plotted in Figs. 47. The values of the dimension- 
less frequency OX, of the dimensionless vapor 
source r,* and of the dimensionless power ampli- 
tude which have been used in preparing these 

3L 

figures cover a wide.range of operating condi- 
tions. 

Since equation (58) is subject to the assump- 
tion of neglecting the effect of oscil!ations on the 
velocity of kinematic waves it is of interest to 
compare the values predicted by equation (58) 
with the exact solution which takes into account 
the effect of oscillation on C,. For this purpose 
equation (33) was solved on a computer using 
for C: and r* the expressions given by equa- 
tions (51) and (52) respectively. The resulting 
solutions are plotted as full lines in Figs. 4-7. 
It can be seen from these figures that the values 
predicted by the approximate but simple, closed 
form solution, i.e. by equation (58) are in rela- 
tively satisfactory agreement with the exact, 
computer solution. This is especially evident at 
high values of c.$ irrespective of the magnitude 
of r,* (see Figs. 4 and 5). However, at a low value 
of of and at a high value of rg the amplitude 
predicted by equation (58) overestimates that 
predicted by the computer (see Fig. 7). 

Figures 8 and 9 show a comparison of the pre- 
dicted results with the experimental data re- 
ported in reference [24] (run No. 7) for oscilla- 
tory power input to water at 400 psi. The full 
lines are the computer solution whereas the 
dashed curves are the values predicted by 
equation (58). As in the case of constant power 
(c.f. Fig. 3) the predicted values of (a) are higher 
than the experimental data for low values of 
z*. This is the consequence of inlet subcooling. 
For higher values of z*, when the effect of inlet 
subcooling is negligible, these figures show good 
agreement between predicted and experimental 
results. As noted previously an analysis of the 
void response is subcooled boiling will be 
reported separately. 

It appears from the foregoing that, when the 
subcooling is negligible either the exact com- 
puter solution or equation (58) can be used to 
predict the transient response of the volu- 
metric concentration to oscillations of the 
power input to the fluid. This transient response 
is given both as a function of time and a function 
of space. This makes the void propagation equa- 
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FIG. 4. Comparison of the oscillatory void fraction predicted by equation (58), with the computer solution 
of equation (33). 

tion particularly suitable for analyses of transi- and the dimensionless amplitude 
ents in fast, power reactors which use liquid metal oscillation by : 
for coolant. 

VI* = cOvficp 

5. OSCILLATORY INLET FLOW CoUfi + sj 

of the flow 

(61) 

We consider now the void response to flow Using these dimensionless groups together 
oscillation when the power input is kept constant. with those defined in Section 2.3, we obtain 

Let the inlet flow oscillation be described by: from equation (21) the dimensionless velocity 

u/,(t) = vli(l + tS sin oft). (59) 
of kinematic waves, thus : 

We define the dimensionless frequency of the C$ = 1 + v’* sin wJt* + y I’* dz* (62) 
flow oscillation by: 0 

~pL 
which for a constant power input reduces to : 

4 = COUfi + Ej 
(60) 

C: = 1 + v’* sin wS*t* + T,*z (63) 
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FIG. 5. Comparison of the oscillatory void fraction predicted by equation (58), with the computer solution 
of equation (33). 

where the vapor source term is given by equa- 
tion (41). 

We seek now the solution of the void propaga- 
tion, i.e. of equation (33) with the value of C,X 
given by equation (63). The solution is given again 
by equation (34) where the u1 and u2 are the 
solution of equations (37) and (38). 

From equation (38), i.e. (40), we obtain the 
expression for the delay time t$ thus: 

to* = t* f A In (1 - a*) = u2 (64) 
0 

whereas from equations (37) and (62) we obtain : 

+ 
PT,* 

wz*’ + r,*’ 
(r,* sin o;t* 

+ 07 cos o*t*) 1 . (65) 

The general solution is then given by equation 
(34), which in view of equations (64) and (65) 
becomes : 

t*+$ln(l-a*)-f(t*--&ln.[l 

+ rzz* + 
IPr;: 

o/*2 + rg2 (r,* sin o*t* 

u,=t*-kin i+r,*z* 
0 [ 

+ co/* cos cop*) 
II 

(66) 
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- EXACT SOLUTION 

FIG. 6. Comparison of the oscillatory void fraction predicted by equation (58), with the computer solution 
of equation (331. 

The form of the functionfcan be evaluated from concentration (CC), at various positions in the 
the initial and boundary conditions. Thus for: heated duct and at various times as function 
z* = 0, a* = 0, t* = t$ we find from equation of the oscillatory inlet flow. We note that if we 
(66) that : set the dimensionless flow amplitude equal to 

Gz* + (ti’*T~/~f’ + r$‘)(r,* sin a$* + f$ cos w;t*) 

+ rg2)(Q sin oj%X + c0f cos oft,*) 
(67) 

Substituting equation (67) in (66), we obtain the following .expression for LX* thus : 

1-a*= 
1 + (o’*r;/@ + rg2)(rg sin mft, + f$ cos a$~) 

1 + r*z* + (U’*r2;/0$2 + rX2)(rX sin of*t* + uf cos o,*tg) 
(68) 

with the delay time t$ given by equation (64). zero, i.e. c”* = 0, in equation (68), we obtain 
In view of equation (32), it can be seen that again the solution for constant power input, 

equation (68) predicts the average volumetric i.e. equation (43). 
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FIG. 7. Comparison of the oscillatory void fraction predicted by equation (58). with the computer solution 
of equation (33). 

6. OSCILLATORY POWER INPUT AND 

OSCILLATORY INLET FLOW 

In this section we shall consider the case when 
both power and flow oscillate. The expressions 
for the two oscillatory terms are given by equa- 
tions (49) and (59). We shall use also the same 
definitions for the two frequencies given by 
equations (50) and (60). 

The velocity of kinematic waves is given by 
equation (62) which, when the power also oscii- 
lates, becomes : 

C: = 1 + v’* sin wr*t* + rl$(l + cp 

sin w,*f*)z* (69) 

The dimensionless vapor source term for the 
case of oscillating power input is given by 
equation (52), i.e. by : 

r* = r,*(l + tp sin ott*) 

where r,* is given by equation (41). 

(70) 

We seek now the solution of the propagation 
equation, i.e. of equation (33) with the values of 
C: and of r* given by equations (69) and (70) 
respectively. The computer solutions of this 
problem are shown on Figs. 10 and 11 for two 
cases, i.e. when the power and the flow oscilla- 
tions are in phase and 180” out of phase re- 
spectively. It can be seen that the void response 
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FIG. 9. Comparison of calculated and experimental void fraction for sinusoidal 
* heat input oscillation where 0,) t * = 0 at zero time in equations (33) and (58). (Data 

of reference [24] for water. see Section 3.) 

is most pronounced in the low void region when equation (69) and following the procedure used 
the two oscillations are out of phase. in Sections 4 and 5, we obtain: 

It is of interest also to obtain a simple analyti- 
cal solution of the problem. For this purpose, we 1 - a* = exp 
shall introduce the same simplification which was [ 

-rg(t* - to*) 

used in Section 4, i.e. we shall neglect the effect 
of power oscillations on the velocity of kine- + 

C%, ~ (cos Cl@* - cos 0$;, (71) 
matic waves. Letting, therefore, cP = 0 in OT, 1 
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where, for given z* and t*, the delay time t;F is given by: 

exp [ - r,*(t* - r;)] = 
1 + (v’*T;/@ + r,**)(r,* sin wS*t, + c0f cos oft;) 

1 + r;z* + (u’*r;T/Cf$ + C$z)(T,* sin f$r* + co, cos o)rr) 
(72) 

In deriving equations (71) and (72), we have 
used z* = 0, a* = 0, r* = r& for the boundary 
and initial conditions. 

Since c1* is related to (a) by equation (32), 
and in view of equation (72), it can be seen that 
equation (71) predicts the average volumetric 
concentration (a), as function of space and 
time, when both power and inlet flow oscillate. 
This solution is subject to the approximation 
of letting t,, = 0 in the velocity of kinematic 
waves given by equation (69). 

Three observations can be made with respect 
to equations (71) and (72). First, we note that 
if we let c,, = 0 in equation (71) then this 
equation reduces to (68), whereas the delay 
time predicted by equation (72) reduces to 
that given by (64). Second, if we set u’* = 0, 
then equation (71) reduces to (58), whereas (72) 
predicts the delay time given by (57). Finally, if 
we set both tp = 0 and u’* = 0, then equations 
(71) and (72) reduce to (43) and (56) respectively. 
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FIG. 10. Low frequency void fraction response calculated from equation 
(33) for in-phase inlet flow and power oscillations. 
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0.25 

FIG. I 1. Low frequency void fraction response calculated from equation 
(33) for 180’ out of phase flow and power oscillations. 

7. SUMMARY AND CONCLUSIONS 

In this paper we have discussed and analysed 
various aspects of the void propagation equa- 
tion which predicts the response of the vapor 
volumetric concentration to variations of (1) 
power, (2) inlet flow, (3) system pressure, (4) 
thermodynamic nonequilibrium, (5) compressi- 
bilities of the vapor and of the liquid and (6) body 
forces. 

It is noted that since the void propagation 
equation predicts the void response as function 
of space and of time, it is particularly suitable 
to analyses of transients in fast, power reactors 
which used a liquid metal for coolant. 

In this paper we have presented and discussed 
the solutions of the void propagation equations 

for the following operating conditions (1) con- 
stant power input and constant inlet flow, (2) 
oscillatory power input and constant flow, 
(3) constant power input and oscillatory flow 
and (4) oscillatory power and oscillatory flow. 
In view of the assumptions which were made in 
the analysis, the preceding solutions are ap- 
plicable when (1) the system pressure is constant, 
(2) the two phases are in thermodynamic equi- 
librium, i.e. the inlet subcooling or superheat is 
negligible, (3) the compressibilities of the liquid 
and of the vapor are negligible, (4) the body 
forces acting on the mixture are constant and 
(5) the vapor drift velocity does not depend upon 
the volumetric concentration. 

The analysis shows that variations of the 



THE PROPAGATION OF THE VAPOR VOLUMETRIC CONCENTRATION 891 

volumetric concentration and, therefore, the 
variations of the mixture density are propagated 
through the two-phase mixture by the velocity 
of kinematic waves. Expressions which predict 
the rate of propagation of these waves and 
which are appropriate to the operating condi- 
tions listed above, have been presented. 

Because it takes a finite time for kinematic 
waves to propagate from one location in the 
system to another, the response of the volu- 
metric concentration to various perturbations is 
characterized by various “delay times”. The 
delay times, appropriate to the operating con- 
ditions enumerated above, have been also 
presented. 

The predicted response of the vapor volu- 
metric concentration to modulations of the 
power input to the fluid has been compared to 
experimental data for water at 400 psi in forced 
flow through a rectangular duct. Satisfactory 
agreement of predicted results with the albeit 
limited amount of available experimental data 
for water was shown. A more extensive compari- 
son with experimental data for Refrigerant-22 
in forced flow through a circular duct shows an 
equally satisfactory agreement. 
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APPENDIX A 

Relation to the Stanaard Formulation in Terms 
of the Diffusion Equation 

It has been customary in the past to analyse 
problems concerned with the transient behavior 
of the concentration in terms of the diffusion 
equation, in particular, in terms of the Fick’s 
law. In what follows, we shall show, briefly, 
how this method can be related to the void 
propagation equation based on kinematic waves. 
A more detailed comparison is given in refer- 
ences [ll-131. 

For simplicity we consider a binary system in 
absence of chemical reactions ; we shall neglect 
the effects of compressibilities. For such a 
system the continuity equation in terms of the 
volumetric concentration <CZ> can be written 
[29] as: 

It is conventional procedure in the literature 
[29] to express the last terms in equation (A-l) 
in terms of the binary diffusion coefficient D,, 
thus : 

41 - a)(l/sj - Vrj) = -D+ g (A-2) 

Substituting equations (A-7) and (A-4) in 
(A-2), we obtain : 

In order to relate this equation to the void 
propagation equation, we note that the drift 
velocities of the vapor and of the liquid can be 
expressed [17] as function of the relative velo- 
city v,, thus: 

Vgj = (1 - cI)V, (A-4) 

Vsj= -CCV, (A-5) 

where the relative velocity between the two 
phases is given by : 

v, = v, - v/ (A-6) 

or in view of equations (A-4) and (A-5), it is also 
given by : 

v, = v, - Vfj (A-7) 

Substituting equations (A-7) and equation 
(A-4) in (A-2), we obtain : 

ctv, = cr(1 - cr)(Vgj - VJj). (A-8) 

Whence the continuity equation, i.e. equation 
(A-l), can be written as : 

!?+[j+!!$d]~=O (A-9) 

which is the void propagation equation, i.e. 
equation (17) with the reaction frequency term 
a set equal to zero. 

We note that in order to use equation (A-3), 
it is necessary to determine, from experiments, 
the value of the diffusion coefficient D,. Experi- 
mental data on the diffusion coefficient for two- 
phase flow systems are almost non-existent. 
Another difficulty arises when the diffusion co- 
efficient depends on the concentration; in such 
a case equation (A-3) becomes a nonlinear 
partial differential equation for which solutions 
are not usually available. 

In view of the foregoing, it appears that, in 
two-phase flow systems, a formulation of the 
problem in terms of kinematic waves offers at 
least two advantages over a formulation in terms 
of the diffusion equation. First, expressions for 
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the vapor drift velocity V~j in two-phase mixtures 
are available together with a method for de- 
termining Vgj [l&20]. This is not the case with 
the diffusion coefficient D,. Second, it is easier 
to solve a first order nonlinear equation, i.e. 
equation (A-9), than to solve a second order 
nonlinear equation, i.e. equation (A-8) when 
D, is a function of ~1. 

For further considerations and additional 
results, the reader is referred to references [ 1 l- 
131. 

APPENDIX B 

Relation to the Results Obtained with the 
Homogeneous Model 

It was noted in Section 2.1, that in a two-phase 
flow system the velocities of the two phases are 
never equal, i.e. there is always a relative velocity 
u,, of one phase with respect to the other. How- 
ever, in a large number of papers dealing with 
various aspects of two-phase flow it has been 
assumed that this relative velocity u,, is zero, 
i.e. that the two phases flow with the same velo- 
city. It has been customary in the literature to 
refer to such a flow as being “homogeneous”. 

It is the purpose of the appendix to examine 
under what conditions it can be expected that 
the results, obtained from the “homogeneous 
flow” model, will be in agreement with the 
experimental data. This will be done by com- 
paring the equations derived from the “homo- 
geneous model” to those presented in Section 3. 

Since it is assumed in the “homogeneous 
flow” model that the relative u,, is zero, equa- 
tions (A-6), (A-5) and (A-4) indicate that : 

u, = vgj = Vfj = 0 P-1) 

Thus, in the “homogeneous flow” model, the 
drift velocities of the vapor and of the liquid are 
zero. 

It can be seen then from equations (7) and 
(8) and equation (B-l) that the velocities of the 
vapor and of the liquid are equal to the volu- 
metric flux density of the mixture, thus : 

ug = uJ = j (B-2) 

Furthermore, it follows from equations (B-l) 
and (18) that in the “homogeneous flow” 
model : 

C, = j (B-3) 

It was shown elsewhere [18] that for the 
“homogeneous flow” model the distribution 
parameter C,, given by equation (27) has a 
value of unity. 

We use now the definition of the flow con- 
centration given by 

P = j,h (B-4) 

which can also be expressed as : 

(B-5) 

If, in accordance with the homogeneous 
model, we set C, = 1 and V, = 0 in equation 
(44), we obtain equation (B-5). Thus in the 
“homogeneous flow” model : 

a = p. 03-6) 

If we let C, = 1 in equation (48) we obtain the 
“evaporation time constant” z derived in 
references [23, 241 using an approach different 
from that developed in Section 3, thus : 

1 AP 4 ih 
-_= -- _ 

0 

(B-7) r PJ P#,, A, 

We note that this time constant appears in most 
analyses (too numerous to cite them here) deal- 
ing’ with boiling. 

Letting Co = 1 in equation (47), and recalling 
that u = p for “homogeneous flow” reduces 
equation (47) to 

t - t, 

t1 - /bJ f Ppg = PJ exp -5 

[ 1 
(B-8) 
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where r is given by equation (B-7). This equation 
gives the density of the mixture for “homo- 
geneous flow”. It was derived also in [25-281 
using a different method. 

It can be concluded from the foregoing that 
if we let C,, = 1 and Vgj = 0 in the equations 
which were derived in Section 3, then the results 
of that section reduce to those obtained pre- 
viously for the “homogeneous flow” model. 
However, since the drift velocity of the vapor is 
never equal to zero it can be concluded that the 
results predicted by the “homogeneous flow” 
model will be in satisfactory agreement with the 
data only if ufi 9 I$. This will be true for high 
mass flow rates. The second condition, i.e. that 
C, = 1 is approximately satisfied at high mass 
flow rates as well as in the fog flow regime. 

and F. W. STAUB 

Conversely, it can be expected that the great- 
est discrepancy between the results predicted 
by the “homogeneous flow” model and the 
experimental data will occur at low mass flow 
rates when the inlet liquid velocity and the 
vapor drift velocity are of the same order of 
magnitude. 

We note further that, in contrast to the results 
presented in this paper, the “homogeneous 
flow” model does not predict the effect of the 
two-phase flow regime on the transient response 
of the volumetric concentration. This statement 
is based on the fact that for the “homogeneous 
flow” model Co = 1 and Vsj = 0 whereas a 
change of flow regimes implies changes of both 
the distribution parameter Co, and of the vapor 
drift velocity Vgj 

R&m&-Differents aspects et differentes caracteristiques de I’equation de propagation des vides sont 
discutes. Cette equation permet d’obtenie la reponse transitoire de la concentration volumique aux per- 
turbations de (1) la puissance d’entree. (2) du flux d’entree, (3) de la pression du systbme, (4) du destquilibre 
thermodynamique, (5) des compressibilites de la vapeur et du liquide et (6) des forces volumiques agissant 
sur le melange diphasique. Cette reponse transitoire est alors a la fois fonction des coordontes spatiales 
et fonction du temps. 

On a obtenu les solutions de l’equation de propagation des vides pour les conditions optratoires suivantes : 
(1) puissance et flux d’entree constants, (2) puissance d’entrte oscillatoire, (3) flux d’entrte oscillatoire et 
(4) puissance et Ccoulement oscillatoires. 

On montre que les perturbations de la densitt du melange se propagent a travers le melange diphasique 
a la uitesse des ondes cinematiques. Les expressions qui prtdisent la vitesse de propagation de ces ondes et 
qui correspondent aux conditions operatoires citees ci-dessus sont donntes. 

La vitesse de propagation tinie des ondes cinematiques introduit un “retard” qui caracterise la response 
de la concentration volumique aux differentes perturbations. Les “retards” propres aux conditions opera- 
toires bnumertes ci-dessus sont Bgalement present& Les resultats predits sont compares aux donnees 

experimentales disponibles avec un accord satisfaisant. 

Zusammenfassung-Verschiedene Gesichtspunkte und Charakteristika der Ausbreitungsgleichung des 
Dampfes werden diskutiert. Diese Gleichung bestimmt das Ubergangsverhalten der volumetrischen 
Konzentration gegen Strorugen (I) der Energiezufuhr. (2) der Einlass-Stromung, (3) des Systemdruckes. 
(4) des thermodynamischen Ungleichgewichts, (5) der Kompressibilitlten von Dampf und Fhissigkeit 
und (6) der auf das Zweiphasengemisch wirkenden Massenkrlfte. Dieses tibergangsverhalten wird fur 
Funktionen des Ortes und der Zeit bestimmt. 

Losungen der Ausbreitungsgleichung sind fur folgende Arbeitsbedingungen hergeleitet : (1) konstantc 
Energie und Einlass-Stromung, (2) oszillierende Energiezufuhr. (3) oszillierende Einlass-Stromung und (3) 
oszillierende Energie und oszillierende Stromung. 

Es wird gezeigt. dass Stdrungen der Gemischdichte im Zweiphasengemisch entsprechend der Gresch- 
windigkeit der kinematischen Wellen ausgebreitet werden. Ausdriicke. die den oben angefiihrten Arbens- 
bedingungen angepasst sind und zur Berechnung der Ausbreitungsrate dieser Wellen dienen. werden 
angegeben. 

Die endliche Ausbreitungsrate der kinematischen Wellen fiihrt auf eine “Verziigerungszeit“. die das 
Ansprechen der volumetrischen Konzentration auf verschiedene Storungen charakterisiert. Die zu den 
Arbeitsbedingungen gehorigen “Verzogerungszeiten” sind ebenfalls erwlhnt. 

Die ermittelten Ergebnisse werden mit verfiigbaren Versuchsdaten verglichen. Die Ubereinstimmung 
ist zufriedenstellend. 
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AHHOTaqHSi-~aCCMaTpHBaloTCFI pa3JIW4HbIe TUIIM M XapaKTepHCTHKM ypaBHeHHR paCnpO- 

CTpaHeHWI ny3bIpbKOB.3TO ypaBHeHEle Onpe~eJIReTHeyCTELHOBHBLLIyIOCf?peaK~HKI O~'~I?MHO~~ 

KOHl\eHTpaL&IIll Ha BO3Mg~eHW (1) nO~BO~IiMOti MOUHOCTA, (2) BXoRHUeI'o nOTOKa, (3) 
;laBJIeHHfI CBCTeMbI, (4) TepMOfiHHaMWIeCKOrO HepaBHOBeCHFI, (5) CHCMMaeMOCTH napa H 

WllAKOCTM &I (6) MaCCOUbIX CMJI, AeiCTByIOWlIX Ha J&ByX+aaHyIO CMeCb. 3Ta HeyCTaHOBHB- 

uIaf3cfI peaK~iu3 onpene.neILa IGAK +~HK~R~I npocTpaHcTsa II speMeHH. 

Pellrerrm ypaBIreIL5Ifl pacnpocTpaHeawI ny3bIpbKOB BbII3efieHbI znf3 cnezyrowMx pa6osnx 

yCJIOBHii: (1) nO('TOfIIlHhIe MOuHOCTfI If BxO~fIII@l IIOTOK, (2) OCL~IIJI,?IlpyIO~aH nORBO@lMafi 
MOIL\HOCTb, (3) Ol~I~Il.WILIp~Io~fIfi BxO,7fIILLHti nOTOK, (4) OCI[lrJIJIIlpyloafl MOWHOCTb 11 OCqLWI- 

JIIlJ3yloI~Hi nOTOK. 

I~OIta3aIi0, 'IT0 BO:3MyLL~eIL~lfI IIJOTHOCTM CMeCII paCIIpOCTpaHfWTCfI Wpea AByX@3HyKl 

CMeCbCO CKOpOCTbH) KIlHCMaTH'LeCKIIX LlO,-IH.~~pLlBO~fITCfI BbIpairieKlifI,nO KOTOpbIM paCCWTbL- 

BaeTCH CKOpOCTb paCIIpOCTpaIIeIillfI >TLIX BOJIH II KOTOpbIe COOTLieTCTByIOT nepeWCneILHbIM 

BblIlIe pa6owM yCJIOBIifIH. 

ICoIrewrafL cKoporTb pacnpocTpaILeIrwI KLIIIeMaTwLecKILx ~0znL BB~~~KT #spewI aanaalbr- 

BaIILIRa, KOTOpOP XapaKTepII:IyeT peaKL[IIIo 06aFMtLOfi IiOH~eHTpa~HLI Ha pa3JLIiqHhLe I308My~e- 

HLIR. IT~LLB~~IITC~I wpevn :3ana:3~bIrtarirrFI~), COOTLWTCTB~hJ~ee pa6owIM yUIOBIifIM, nepe- 

'4IICJIeIiRhIJI BhIIIie. 

~p~BHelIlIe IIOZIyWHHbIX ['e:3yJIbTaTOB C HYeIO~IIMHCR 3KCnepIIMeHTaJIbHbIW J&aHHbIYH 

IlOIFa3bIInat?T ~;loB;IeTBOpIlTenbIIOe COOTBeTCTBIle MemAy HIIMLI. 


